Solid Edge Simulation

Embedded finite element analysis for design engineers

Benefits
• Reduce the need for costly prototypes with virtual testing
• Get your product to market faster with reduced physical testing
• Innovate more by experimenting with your design virtually
• Reduce recalls by finding out if your product fails before it reaches the customer
• Optimize material usage and minimize product weight
• Execute redesigns faster with synchronous technology

Summary
Solid Edge® Simulation software is an easy-to-use, built-in finite element analysis tool that enables design engineers to digitally validate part and assembly designs within the Solid Edge environment. Based on proven Femap™ finite element modeling technology, Solid Edge Simulation significantly reduces the need for physical prototypes, thereby reducing material and testing costs, while saving design time.

Automatic finite element model creation
You can create and refine finite element meshes where required to improve accuracy of results. Solid Edge Simulation supports solid meshes (using tetrahedral elements), two-dimensional shell element meshes on midsurfaces and sheet structures, hybrid models that contain both 2D shell and 3D solid elements, as well as 1D beam elements for frame structures. A mesh size slider bar that makes element size adjustments to the overall finite element mesh is available with additional control of the number of elements on individual edges and faces. You can leverage a mapped mesh capability to take advantage of certain geometry topologies and create a more orderly and well-shaped mesh. In addition, the mesh size will automatically adjust to accommodate detailed model features. In addition, you can fine-tune the mesh with manual edge and face element sizing to generate an efficient simulation model that will deliver accurate results. Prior to creating the finite element model, you can use synchronous technology, with its ability to make history-free model changes, to prepare and simplify the geometry model quickly and easily.
Solid Edge Simulation

Features
- Embedded finite element analysis for design engineers
- Part, sheet metal and assembly contact modeling with realistic component interaction
- Automatic finite element model creation with optional manual override
- Realistic operating environment modeling with full complement of loads and constraint definitions
- Ability to maintain loads and constraints during model changes
- Evaluate thermal and cooling performance with time history results
- Synchronous technology for fast model redesigns in what-if studies

Full complement of load and constraint definitions
Solid Edge Simulation provides all of the boundary condition definitions that you need to define realistic operating environments. The constraints are geometry-based and include fixed, pinned, no rotation, symmetric and cylindrical variations. The loads are also geometry-based and include mechanical as well as temperature loading for thermal analyses. Mechanical loads include forces, pressures and effects caused by body rotation and gravity. Solid Edge Simulation facilitates load and constraint application with Quick Bar input options and handles for direction and orientation definition.

Analyzing assemblies
You can quickly connect assembly model components together. Assembly component interaction can be a glued connection between components or linear contact based on an iterative linear solution.

Contact between components can be detected automatically, or connections can be defined individually through manual face selection. Assembly materials and properties can be applied manually, selected from a material library or inherited from the geometry model by default. The included NX™ Nastran® solver assures realistic assembly component interaction that facilitates a robust solution.

Analysis types
You can obtain the structural simulation results, such as deformation, stress and strain, etc. caused by a static loading, find the natural frequencies of vibration or determine buckling loads of a design using the industry-standard NX Nastran solver. Both steady and transient heat transfer analysis are also available to validate the cooling performance by evaluating the temperature distribution of the model. In addition, the coupled thermal and structural analysis can be applied to determine thermal effects to the structural stress/strain. Re-use of finite element model loads and constraints is as easy as dragging and dropping from one study to another.

Analysis scalability
Simulation functionality scales from application to individual parts to analysis of large assemblies, all the way to Femap with NX Nastran, thereby enabling you to define and analyze complete systems. This complete line of products provides a scalable upgrade path for users who need to solve more challenging engineering problems. Complete geometry
and finite element models with boundary conditions and results can be seamlessly transferred from Solid Edge to Femap, where more advanced analyses can be employed if desired.

Postprocessing
You can interpret and understand the resulting model behavior quickly with the comprehensive graphical postprocessing tools. Model results can be displayed in a number of forms, including color and contour plots, which can be continuous, displayed as distinct contour bands or by element and displacement and mode shapes that can be animated. Min/max stress markers and a probe tool with results callout boxes also are available. With Solid Edge Simulation’s comprehensive postprocessing functionality, you can quickly identify problem areas for potential design revision and generate HTML reports of simulation model information and final results.

Design updates
You can quickly and easily make any required design update during post analysis. Synchronous technology enables you to make history-free feature-based model changes at will, which significantly accelerates the model refinement process. In addition, Solid Edge Simulation maintains associativity between the CAD and finite element models, while making sure that your applied loads and constraints are maintained for all geometry model changes.

Recommended system requirements
- 64-bit Windows 10 operating system
- 8 GB RAM or more
- True color (32-bit) or 16 million colors (24-bit)
- Screen resolution: 1280 x 1024 or higher, widescreen format

Minimum system configuration
- 64-bit Windows 10 operating system
- 4 GB RAM or more
- 65K colors
- Screen resolution: 1280 x 1024 or higher
- 10.0 GB of disk space is required to install Solid Edge